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A simple method for describing and classifying octahedral tilting in perovskites is given and it is shown 
how the tilts are related to the unit-cell geometries. Several examples from the literature are listed and 
predictions about hitherto unknown structures of some materials are made. 

Introduction 

The perovskite structure is very commonly found in 
compounds of general formula ABX3 and many of 
these materials have interesting and important proper- 
ties, such as ferroelectricity, piezoelectricity, non- 
linear optical behaviour and so on. 

Fig. 1 shows the basic unit, which consists of corner- 
linked octahedra of X anions (usually oxygen or 
fluorine) with B cations at their centres and A cations 
between them; the cations have been left out of the 
diagram since, in this paper, only the octahedra will be 
considered. The ideal structure thus depicted is found 
in some materials, for example SrTiO3 at room tem- 
perature; more usually the structure is modified by 
cation displacements as in BaTiO3, or by the tilting of 
octahedra as in CaTiO3, or by a combination of both 
as in NaNbO3(P). The cation displacements, which 
are directly linked with ferroelectricity and antiferro- 
electricity, are relatively simple to deal with and in any 
case do not directly affect the lattice parameters except 
by a relatively small distortion of the octahedra. The 
tilting of the octahedra has usually a far greater effect 
on lattice parameters but is more difficult to describe. 
However, attempts have been made to discuss these 
phenomena (Megaw, 1966, 1969) and it is as a result 
of these studies that the present work has evolved.* It 

* A scheme very similar to the one described here has re- 
cently been derived independently by J. K. Brandon (private 
communication) in connexion with the structure of CazNb207. 

is the aim of this paper to show how the various tilt 
systems may be classified and how they affect the 
crystal symmetries. Displacements of cations are not 
discussed here at any length. The derived results are 
based on the assumption that the octahedra are regular 
throughout. Very commonly the overall symmetry 
follows that of the tilts in spite of displacements and 
distortions; and even when it does not, the symmetry 
due to the tilts can be considered separately. 

This classification has already proved useful in a 
recent study of the 7'2 ~ cubic transition in NaNbOa 
(Glazer & Megaw, 1972), in which it readily suggested 
a likely model for the Tz structure. More recently, 
it has also been successfully used in studying the 
TI--~ T2 transition (Ahtee, Glazer & Megaw, 1972). 
In connexion with phase transitions, dynamic (as op- 
posed to static) tilting of octahedra can be interpreted 
in terms of lattice modes. In fact, it seems probable 
that the most obvious tilt configurations generally 
correspond to some of the most important modes as- 
sociated with phase transitions in perovskites. The 
present classification should therefore find some use 
in the lattice dynamical studies of these transitions. 

Effect of octahedral tilts 

When an octahedron in the perovskite structure is 
tilted in some particular way it causes tilting of the 
neighbouring octahedra. However, it is, in practice, 
extremely difficult to visualize the total effect, and in 
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any case, there are several possibilities for the final 
structure. 

Physically it is useful to consider the tilting of an 
octahedron about any one of its symmetry axes. For 
the purposes of a general classification, however, it is 
preferable to consider all tilts as combinations of 

* A note of caut ion must be sounded  here. The three 
separate tilt operat ions about  the tetrad axes do not  belong to 
an Abelian group.  In other  words, the final tilt a r rangement  
depends on the order in which the tilt operat ions are carried 
out. This does not greatly affect the arguments  of the present 
paper,  since the scheme outl ined here is in tended for the 
description of structures and not their derivation. In any case, 
for small tilt angles (<  15 °) the dependence of the result on 
the sequence of operat ions is only a second-order  effect. 

b ) 

Fig. 1. Octahedral  f ramework  of  cubic perovskite.  The A 
cation is in the interstice formed by the anion octahedra;  
the B cation is at the centre of  each octahedron.  

b ) 

a 1 < 

First layer Second layer 

> ( 
) < 

Fig. 2. Schematic diagram of  two adjacent layers of octahedra.  
The + and - signs indicate the relative senses of tilt in the 
octahedra  (see text). 

component tilts about the three tetrad axes.* For small 
angles of tilt, the component tilts can be taken to be 
about the pseudocubic axes prior to tilting, the 
magnitudes of the tilts being indicated symbolically by 
a set of three letters which refer to the axes in the order 
[100], [010], [001], and which in the general case of 
unequal tilts are denoted abc.  Equality of tilts is denoted 
by repeating the appropriate letter, e.g.  aac  means 
equal tilts about [100] and [010] with a different tilt 
about [001]. We consider only those tilts that are 
'freely variable' and independent. 

In Fig. 2 two adjacent layers of octahedra are shown 
schematically. Consider the octahedron at the top-left 
position in the first layer and let it be tilted in an 
arbitrarily defined positive sense about the pseudo- 
cubic [100], [010] and [001] axes. This is indicated on 
the diagram by + + -I-. 

We must now see how this affects the surrounding 
octahedra. If we choose any particular axis, then in 
directions p e r p e n d i c u l a r  to it, successive octahedra are 
constrained to have opposite tilts about that axis. 
Thus, the positive tilt about [100] of magnitude a in 
the first octahedron makes a negative tilt about [100] 
of equal magnitude in the nearest-neighbour octahedra 
along [010] and [001]. This operation can be carried 
through to all the octahedra and the final result is 
shown in this figure. It is obvious that there are some 
missing signs, indicating some choice in how to 
complete the structure. This arises because successive 
octahedra a long  an axis can have either the same or 
opposite sense of tilt. We can then indicate the par- 
ticular choice by the superscripts + ,  - or 0, to show 
whether successive octahedra along an axis have the 
same tilt, opposite tilt or no tilt about that axis. As- 
suming no repeat period consists of more than two 
octahedra, there are 10 distinct possibilities: 

a + b + c  + a + b + c  - a + b - c  - a - b - c -  3 tilts 
aOb + c + a°b + c - a ° b - c  - 2 tilts 
aOa°c + a°a°c - 1 tilt 
aOaOa ° no tilts 

where the repetition of the symbol a ° is used when there 
is zero tilt about more than one axis. 

In the above scheme, combinations such as a + a + c  +, 

a + a - a  + e tc .  have been omitted, since, for the moment, 
we shall deal only with the senses of tilt. In Fig. 3 these 
arrangements are drawn out in full. It can be seen that 
each case gives a self-consistent structure, i.e. there are 
now no missing signs and each structure has a regular 
repeat. This simple diagram permits the lattice-centring 
conditions to be obtained merely by inspection. For 
example, a + b + c  ÷ is body-centred and a - b - c -  is all- 
face-centred. 

In order to demonstrate that all these structures are 
physically possible and that the predicted centring 
does occur, a flexible model was constructed. In Fig. 4 
a series of stereo-photographs of the eight representa- 
tive cctahedra of each arrangement is shown. The cor- 
rectness of the prediction can easily be verified. With 
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some experience, it is also a simple matter from Fig. 4 
to find other symmetry elements, such as mirror planes 
and rotation axes. 

We must now go on to discuss the relation between 
the tilts and the crystal systems, and here the magnitude 
of the tilts becomes important. Any tilt, as defined here, 
results in a decrease in the distances between octa- 
hedron centres (pseudocubic subcell edges) perpen- 
dicular to the tilt axis. The corresponding distance 
along the tilt axis is unchanged by the tilt operation. 
Denoting the angles of tilt about [100], [010] and [001] 
by ~, fl and 7 respectively (less than 15 °, say) the 
pseudocubic axial lengths are given by 

ap=~ x cosfl cos 7 
bp = ~ cos c~ cos 7 
c . = ~  cos ~ cos/~ 

where ~ is the anion-anion distance through the centre 
of the octahedron. 

These equations show that three unequal tilts 
produce three unequal pseudocubic spacings, two equal 
tilts produce two equal spacings and one different and 
three equal tilts produce three equal spacings. Thus 

a~bJc k has 3 unequal spacings 
atbJb ~' has 2 equal spacings 
a~a~a k has 3 equal spacings 

where superscripts i ,j ,  k refer to the senses of tilt about 
[100], [010] and [001] respectively, and may stand for 
+ ,  - ,  or 0. It should be noted that three equal tilts 
correspond to tilting about one of the triad axes of the 
octahedron and two equal tilts correspond to tilting 
abo~t one of its diad axes, provided that the tilt angles 
are small; or, with larger tilt angles, that the operations 
are carried out in an alternating sequence of small 
steps. 

In order to deal with the interaxial angles it is useful 
to note that whenever a superscript is 0 or + this 
implies the existence of a mirror plane perpendicular 
to the relevant axis. 

For the one-tilt systems a°a°c ÷ and a°a°c-, therefore, 
there are respectively three and two mutually perpen- 
dicular mirror planes and hence both tilt systems give 
rise to orthogonal axes; it is also obvious that a single 
tilt about [001] must leave a 4-fold axis and therefore 
both cases have tetragonal symmetry. 

For the two-tilt systems it is clear that whenever the 
superscripts are 0 + + or 0 + - (in any order) the unit 
cell must have orthogonal axes, since the + ' s  and 0's 
necessarily imply at least two mirror planes mutually 
perpendicular. When two superscripts are - the 
problem becomes a little more difficult. Fig. 5(a) 
shows part of the unit cell of a°b-c - .  A, B and C are 
three anion atoms of one octahedron. Here A lies 
above the (001) plane through z = 0  and B lies on it; C 
is at a height z=¼. The next octahedron along [001] is 
denoted by A', B' and C'. A' lies below the (001) plane 
through z=½ and B' lies on it. C'  is the atom at the 
bottom vertex of this octahedron and must therefore 

be the same atom as C. Since the diagram has been 
drawn as if the cp axis were perpendicular to (001) we 
see that there is a displacement vector along [010] be- 
tween C'  and C. Therefore in order that C'  and C be 
the same atom the cp axis must be inclined to bp but 
must remain perpendicular to ap. A special case arises 
in a°b-b - .  Here the equality of tilts about [010] and 
[001] implies equality between bp and c~, whence it is 
pcssible to construct an orthogonal unit cell by trans- 
forming from the axes ao=2ap, bo=2b~,, Co=2Cp to a 
new s:t a:,. b,. c,, defined by 

ao bo Co ,(, 0 0) 
b,, o ~ - }  
c , , \0  ½ ½ . 

b 

F i r s t  Laye r  Second  Laye r  
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+ . . . .  ,+ 4 . - -  - 4 . -  ++4 -  -+ -  

+++  -+ -  +++  - -+  + . . . .  

+÷+  -+ -  ÷++  - - -  + -+  - - -  

+++  -+ -  ++÷  - - -  + -~  - - -  
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+ - -  - ++  + - -  - ++  + - -  - +~  
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1 
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0 - -  0 -+  0 - -  0+ -  0+÷  0+ -  

0+~  0+ -  0+÷  0 - *  0 - -  O -+  
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0 - -  0 -+  0 - -  0++  0+ -  0~+  
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00+  00 -  00+  00 -  00+  00 -  

O000C" 
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oOoOoO P 

Fig.3. Schematic diagram illustrating all the possible senses 
of tilt. Each set of three symbols refers to one octahedron; 
nine octahedra make up one layer as shown in Fig. 2, but 
the outline of the octahedral framework has been omitted 
for simplicity. 
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THREE TILTS 

PLATE 8 

o + b + c +  

o +b+c - 

a + b - c -  

o - b - c -  

Fig.4. Stereo-photographs of the eight representative octahedra in each arrangement.  The axes used are right-handed with [001] 
vertical and [010] to the right. The origin is taken at the centre of any octahedron. 

[To face p. 3386 
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TWO TI LTS 

o O b + c  ÷ 

o O b + c  - 

o C b - c -  

Fig. 4 (cont.) 
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ONE TILT 

cIOCIOC+ 

cIOoOc- 

NO TILTS 

o, Ot/O0 0 

Fig.4 (cont.) 
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For  the three-tilt systems, similar arguments can be 
applied. Thus a + b + c  + and a + b + c  - are orthogonal 
systems, since they have at least two mutually-perpen- 
dicular mirror planes, while a + b - c  - must have two 
axes bp and cp inclined and one (ap) perpendicular, as 
in a ° b - c  - .  When all three superscripts are - it is there- 
fore reasonable to expect all three axes to be inclined 
to one anothcr. Fig. 5(b) shows the interesting case of 
a - b - b - .  Since the tilts about [010] and [001] are of the 
- type, the bp and cp axes are shown inclined to one 
another. In this case we see that the displacement 

_ _ . . . ~  

vector A ' A  lies along [0T1] and as expected all three 
axes are inclined to one another. In this particular 
example, transformation by the above matrix gives a 
unit cell with c,, perpendicular to a, and b, and with 
a, and b, inclined to one another. The special case of 
a a a has three axes equal in length and equally 
inclined to one another. Since three equal tilts cor- 
respond to tilting of the octahedra about their triad 
axes, this system must be rhombohedral. 

C" C B" 

ap (a) 

A C" 

. . ©  

i 
I 

I 
I 

(b) 

Fig. 5. (a) Projection on (001) of part of the unit cell of a°b-c - ,  
showing the anions in two successive octahedra along [001]. 
The relative coordinates of the anions are indicated in the 

1, 

key to the diagram. The vector C ' C  implies that c o is inclined 
to (001) (see text), z coordinates: A, +z; A', ½-z; B, 0; 
B', ½; C, C', ¼. (b) Projection on (100) of part of the unit 
cell of a - b - b - ,  showing the anions in two successive octa- 

hedra along [100]. The vector A'A implies that ap is inclined 
to (100). x coordinates; A, A', ¼; B, +x; B', ½-x;  C, +x; 
C ' , ½ - x .  

In this way it is possible to formulate some general 
rules to help in correlating the tilt systems with the 
relative lattice parameters. 

(1) Equality of tilts about two or more pseudocubic 
axes leads to equality in the respective pseudocubic 
axial lengths, e.g. a+ a+ a + has a p = b , , = c p .  

(2) If, in the symbolic nc, tatia:l used here, two or 
more superscripts are + or 0, th:  i~s:udocubic axes 
are orthogonal. 

(3) If two, and o:dy two, sup~rscri;~ts are - ,  then 
the two respective ps:.udc, cu ,ic ax.. s arc- inclined to one 
another whilst the third is ; r;~ ~dicular to them both. 

(4) If all three supcrs~:ri, ts arc - ,  then all three 
pseudocubic axes are i:-,cli ~<~ to; o::~: another. 

It finally remains ncccss;.~ir:. ' t(; d:tcrrnine the space- 
group symmetry of the tilt s- st,:ms. The simplest way 
to do this is to draw a plan c:,f the structure and then 
fill in the symmetry elements. As an example, Fig. 6 
shows two (001) layers of the system a - b + c  + and the 
presence of mirror and n-glide planes shows that its 
space group is P n m m  (No. 63). 

In Table 1, the resulting tilt systems have been sum- 
marized together with the rcleva~t symmetry informa- 
tion. The different tilt systems are numbered serially 
from 1 to 23. The lattice-centri:lg refers to a unit cell 
ao = map,  bo = nbp, Co = qco as given in the fourth column. 
The space-group symbol in each case refers to the axes 
ao, bo, Co except where this w~uld give lower symmetry 
than the true crystal symmetry. In th :sc cas~.s, indicated 
by an asterisk, the true space group has been given, the 
axes a,,, b,, c, being defined by the matrix given above. 

This Table enables many of the structures to be 
determined uniquely from X-ray evidence. For exam- 
ple, the systems a + b - b  - ,  a + a - a  - and a ° b - b  - ,  which 
are orthorhombic, are all distinguishable from one 
another either because of their pscudocubic axial 
lengths or because of their lattice-centring when re- 
ferred to the pseudocubic multiple-ccll axes ao, bo, co. 
Similarly, the three tetragonal systems a°b+b +, a°a°c + 
and a°a°c - are distinguishable from one another; use 
of this was made in the derivation of the NaNbOa(T,) 
structure (Glazer & Megaw, 1972). 

Experimental determination of the lattice-centring 
can be difficult, since the X-ray reflexions that charac- 
terize it are very weak in intensity. Because the tilts 
produce doubling of the pseudocubic axial lengths, 
these reflexions are found on half-integral reciprocal 
lattice planes, if the original subccll axcs are used. 
Unlcss specifically looked for, they can easily be missed, 
particularly in studies on powdered materials. Never- 
theless, from the observation of very few half-i:~tegral 
reflexions it is possible to derive a trial model for the 
structure. 

The scheme of simple tilt systems outlined so far has 
relied on the condition that no repeat period consists 
of more than two octahedra. It is obvious that more 
complicated compound tilt systems can be built up 
by stacking the simple systems tog~.thcr in an i;~finite 
variety of ways. In practice only two different corn- 
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pound tilt systems have been observed up till now, the 
stacking being found to occur along one crystallo- 
graphic direction, [010]. For this reason we consider 
only this kind of compound tilt, the others being 
beyond the scope of the present work. The structures 
may best be described by considering them in terms of 
successive pairs of octahedron layers, each sharing a 
layer in common, or single layers when the tilt about 
[010] is zero. 

In one of the two cases the repeat period along [010] 
is 4bp. Numbering the layers 1 to 4, the structure is 
described by a - b + a  - for layers 1 and 2, a - b - a -  for 
layers 2 and 3, a - b ÷ a  - for layers 3 and 4. This can 
be written thus 

( a - b + a - ) ~  ( a - b - a - ) ~  ( a - b + a - )  4. 

In the other case the repeat period along [010] is 6bp. 
Here the structure consists of a - b + c  ÷ for layers 1 and 
2, a -b°c  ÷ for layer 3, a - b ÷ c  + for layers 4 and 5, 
a -  b°c ÷ for layer 6, thus: 

(a-b+c+)~ (a-b°c+)] (a-b+c+)~ (a-bOc+) 6 . 

The actual multiplicities of 4b, and 6b, in these cases 
are consequences of the tilts about [100] and [001]. 

Symmetry-determination for compound tilt systems 
is more difficult than for the simple systems and will 
not be attempted here. In any case, the known examples 
of such tilt systems (NaNbO3, phases P and R) also 
have cation displacements to further complicate mat- 
ters. In fact, it has only been possible to determine 
their structures by carrying out a complete refinement 
using many reflexions (Sakowski-Cowley, Lukasze- 
wicz & Megaw, 1969; Sakowski-Cowley, 1967). 

Examples of tilt systems 

A search of the literature has revealed many perovskite 
structures with octahedral tilts and these are sum- 
marized in Table 2. The assignment of the tilt systems 
was made usually by reference to the published atomic 
coordinates supplied by the various authors. Some- 
times, as in AgNbO3 for example, the structures have 
not actually been determined except by analogy with 
already known structures; as there is no reason to 
doubt their correctness, they too have been included in 
the Table, but are marked with an asterisk. 

In Table 2 the materials are arranged according to 
tilt system, together with an indication of which cat- 
ions, if any, are displaced. The observed space groups 
are also given for comparison with the space groups that 
would be expected from the anion framework alone. 

It is immediately apparent that the majority of tilted 
structures belong to the systems (10) a - b + a  - and (14) 
a - a - a - .  It is not clear why this should be; in fact, it is 
surprising that out of the 23 possible tilt systems only 9 
have been found to occur. It would be extremely 
interesting to find some of the other structures, in 
particular the cubic (3) a+a+a + and the tetragonal (16) 
a°b+b + with axial ratio less than unity. 

First Layer Second Layer 

ap 

iii - . - ~ ° -  

1 1 

I 

Symmetry 
elements 

Fig.6. Plan of two (001) layers of octahedra for the tilt system 
(4) a-b+c +. Closed and open circles indicate whether the 
anions are above or below the planes through the centres of 
the octahedra; the centres of the octahedra of the first layer 
are at height 0 and those of the second layer at height ½. 
The symmetry elements, shown below the plan, indicate that 
the space group is Pnmm. 

The differences between the observed space groups 
and those due to the tilted framework alone arise out 
of the cation displacements. For example, we find that 
there are two space groups for a a a materials; 
when there are no B cation displacements the space 
group is R3c, whereas when the B cation is displaced 
the centre of symmetry is lost and the space group 
becomes R3c. Again, in PrA103 below 135°K, the 
observed space group (with reference to pseudocubic 
axial directions) is FT as opposed to F 1 2 / m l  for the 
framework alone. Here the Pr displacements are 
responsible for imposing triclinic symmetry on a mono- 
clinic framework. 

One example of an untilted structure has been given 
in Table 2, namely KCuF3, since it sounds a note of 
caution. In this material the observed space group is 
F4/mmc,  as in a°a°c- ,  and yet the axial ratio is less 
than 1. It is therefore very difficult to ascertain by the 
arguments of the present paper whether the structure is 
one with no tilts plus large distortion of the octahedra 
or whether it is one with tilts as in a°a°c - plus smal l  
distortions. In fact it is known to be the former; this 
is hardly surprising in view of the large Jahn-Teller 
effects that are normally shown by copper compounds. 

Distortions of the octahedra, then, can lead to ambi- 
guities, although it appears that in the majority of cases 
they do not. Because of them the actual magnitudes of 
the lattice parameters may not lead to an accurate 
measure of the tilts, although there is evidence that 
they do, at least, provide a reasonable estimate of them 
(Megaw, 1971, with reference to the rare-earth ortho- 
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ferrites). In LaA1Oa, which is a - a - a - ,  the flattening of 
the oxygen octahedra (Megaw, 1971) actually leads to 
a rhombohedral angle greater than 90 °. Nevertheless, 
this still does not affect the nature of the tilt system: 
the lattice-centring conditions and relative pseudo- 
cubic lattice parameters would still lead to the correct 
assignment of a a a . 

SrTiO3 and KMnF3 possess the a°a°c - structure and 
this has been shown to be associated with the condensa- 
tion of a/-'25 soft-phonon mode at q=½,½,½ on trans- 
forming from the cubic phase (Shirane & Yamada, 
1969; Shirane, Minkiewicz & Linz, 1970). This mode 
has components consisting of rigid oscillations of the 
anion octahedra about [001] with successive octahedra 
along this direction oscillating in antiphase. It is for 
this reason that, when the mode condenses at the 
transition temperature, a°a°c - results. 

On the other hand, NaNbOa(T2) possesses the a°a°c + 
structure (determined with the present technique, using 
three reflexions), and condensation of an M3 soft- 
phonon mode at q = ½,½,0 has been postulated to explain 
the transition from the cubic phase (Glazer & Megaw, 
1972). This mode consists of successive octahedra 
along [001] oscillating in phase about this direction, 
thus giving rise to the a°a°e + structure on condensation. 

More recent work on the 7"1 phase of NaNbO3 (Ahtee, 
Glazer & Megaw, 1972) showed that its structure could 
be described by a -b°c  ÷, and the transition from T2 to 
7'1 has been explained in terms of condensation of a F25 
mode. The two transitions can then be summarized 
thus: 

M3 F25 
a°a°a ° (cubic) -+ a°a°c + (T2) -+ a -b°c  + (7'1) 

and we see that condensation of soft-modes produces 
a sequence of transitions to give the scheme: zero-tilt 
system -+ one-tilt system -+ two-tilt system. 

The simple tilt systems derived in this paper are there- 
fore of importance in the discussion of soft-phonon 
modes in connexion with phase transitions in perov- 
skites, since rigid oscillations of the octahedra con- 
stitute important modes near the transitions. 

As mentioned earlier, there are not many known 
examples of compound tilts. Actually, only NaNbOa is 
definitely known to possess such complicated tilt 
systems, although it is very likely that AgNbO3 is 
isomorphous with it. The evidence for this (Francombe 
& Lewis, 1958) is based on the presence of superlattice 
lines corresponding to a unit cell of 2ap × 4bp × 2cp, 
with ap=cp and fl>90 °, as is found in NaNbOa(P). 

Table 1. Complete list o f  possible simple tilt sys tems 

Serial Lattice Multiple Relative pseudocubic 
number Symbol centring cell subccll parameters 

3-tilt systems 
(1) a+b+c + I 2 a p x 2 b p x ' . c p  a p ~ b p q : c p  
t2) a+b+b + I a p ~ b p = c p  
(3) a+a+a + I a p = b p = c p  
(4) a+ b + c - P apv~bp~cp  
(5) a+a+c - P a p = b p ~ c p  
(6) a+b+b - P a~v~bp=cp 
(7) a + a + a-  P ap = bp = cp 
(8) a+ b -  c - A a p ~ b p ~ c x ,  o ~  90 ° 
(9) a + a-  c- A ap = bp ~ cp~ ~ 90 ° 

(10) a + b - b  - A ap v~ bp=cpoc ~ 90 ° 
(11) a+ a - a  - A a p = b p = c p ~ t ~ 9 0  ° 
(12) a - b - c -  F ap v~ bp ~ cpo~-C fl-¢ ? ~ 90 ° 
(13) a - b - b -  F " a p ~ b p = c p ~ , O ~ T v ~ 9 0  ° 
(14) a a a -  F a p = b p = c p o ~ = f l = T v ~ 9 0  ° 

2-tilt systems 
(15) a°b + c + I 2ap x 2bp x 2cp ap < bp ~ cp 
(16) a°b + b + I ap < bp = cp 
(17) a°b + c - B ap < bp ~ cp 
(18) a°b + b - B ap < bp = cp 
(19) a ° b -  c -  F ap < bp ~ cpct ~ 90 ° 
(20) a° b -  b -  F ap < bo = c~ct ~ 90 ° 

1-tilt systems 
(21) a°a°c + C 2ap × 2bp x cp a .  = bp < cp 
(22) a°a°c -  F 2ap x 2bp x 2cv ap = bp < cp 

Zero-tilt system 
(23) a°a°a ° P ap x bp x c~ ap = bp = ct, 

* These space group symbols refer to axes chosen according to the matrix transformation 

½ - 

½ . 

Space group 

I m m m  (No. 71) 
l m m m  (No. 71) 
Im3  (No. 204) 
P m m n  (No. 59) 
P m m n  (No. 59) 
P m m n  (No. 59) 
P m m n  (No. 59) 
A 2 ~ / m l  1 (No. 11) 
A 2 1 / m l  1 (No. 11) 
P n m a  (No. 62)* 
P n m a  (No. 62)* 
F I  (No. 2) 
I 2 / a  (No. 15)* 
R~c (No. 167) 

l m m m  (No. 71) 
14 /m  (No. 78) 
B m m b  (No. 63) 
B m m b  (No. 63) 
F 2 / m l l  (No. 12) 
I m c m  (No. 74)* 

C 4 / m m b  (No. 127) 
F 4 / m m c  (No. 140) 

P m 3 m  (No. 221) 
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In the case of AgTaOa, the evidence for the compound 
system is even more tenous since there has been no 
observation of the necessary superlattice lines. 

It is tempting to make some predictions about the 
nature of the tilts in hitherto undetermined structures 
by making use of the known lattice parameters and 
symmetries; examples are shown in Table 3. 

SrZrOa below 730°C has pseudocubic subcell 
parameters ax, = cp > bp, f l ¢  90 ° and is consistent, there- 
fore, with a - b + a  - or a-b°a  - .  If the lattice type were 
known it would be possible to decide between these 
two possibilities, since they are B-face-centred and all- 
face-centred respectively ;the former structure is the most 
likely in view of the high frequency with which it is found 
in practice. Between 730 and 860 °C the unit cell is tetra- 
gonal with axial ratio less than 1, indicating that the 
structure may be a+a+c°. Similar considerations apply 
to NaMgFa between 760 and 900 °C, to KCoF3 at 78 °K 
and to RbCoF3 below 101 °K.* Between 860 and 1170 °C, 
SrZrOa is tetragonal with axial ratio greater than l and 
therefore may be a°a°c + or a°a°c - .  The presence or 
absence of difference reflexions on half-integral recip- 
rocal lattice planes has not been explicitly reported in 
these compounds. The predictions, therefore, must be 
viewed with caution, since in making them it has been 
assumed that there are no distortions of the octahedra. 

It is clear that, when studying the structures of 
perovskites, a special effort must be made to record 
the very weak difference reflexions found on half- 
integral reciprocal lattice planes. Very often in the past, 
the perovskite structures have been 'determined' by 
observing that the X-ray powder patterns are very 
similar to those of already-known structures. The 
present study has shown that this is unreliable and 
some of the structures quoted in Table 3, therefore, 
may be subject to reconsideration. It is to be hoped 
that the interpretation of future studies of these 
materials will be made more reliable and simpler by 
the use of the scheme reported here. 

I wish to thank Dr Helen D. Megaw for introducing 
me to the problem of octahedral tilts and for her 
constant inspiration. Also, I gratefully acknowledge a 
grant from the Science Research Council which made 
this work possible. 

* One must bear in mind that the original workers with these 
materials have assigned tetragonal symmetry to these phases 
from the measured lattice parameters and not from direct 
observations of symmetry. This means that the structures 
could, in fact, be orthorhombic with ap = bp 4: cp and would be 
then consistent with a+a+c +, a+a+c -, a+a-c + or a+a-c °. 
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